METADATA AND NUMERICAL DATA CAPTURE: SL₁L₂G – Quadruple Point Temperature

Guided Data Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for:

 SL_1L_2G — Quadruple Point Temperature with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

Solubility of Imidazoles in Ethers
Urszula Domańska*, Marta Karolina Kozłowska
Warsaw University of Technology, Faculty of Chemistry,
Physical Chemistry Division,
00-664 Warsaw, Poland

Quadruple Point – (Solid-Liquid₁-Liquid₂-Vapor)

Quadruple Point for 1,2-Dimethylimidazole (1) + Dibutyl ether (2)

<u>Table 5.</u> Experimental Solid-Liquid Equilibrium Temperatures, $T_{\rm and}$ Liquid-Liquid Equilibrium temperatures, $T_{\rm LLE}$ for $\{1,2\text{-Dimethylimidazole }(1) + \text{an Ether}\}$

(2)} Systems; γ_1 , Experimental Activity Coefficient of Solute

<i>x</i> ₁	T/K	T _{LLE} /K	γ ₁	<i>x</i> ₁	T/K	T _{LLE} /K	7/1	<i>x</i> ₁	T/K	T _{LLE} /K	γ ₁
Dibutyl ether											
0.1521	290.63		5.2	0.3555	303.17	307.77	2.6	0.6150	303.17	303.35	1.5
0.1809	292.65		4.5	0.3907	303.17	307.18	2.3	0.6675	303.17	303.27	1.4
0.2052	294.65		4.1	0.4392	303.17	306.42	2.1	0.7342	303.83		1.3
0.2410	298.23		3.6	0.4853	303.17	305.31	1.9	0.7889	304.37		1.2
0.2823	303.17	305.40	3.3	0.5288	303.17	304.23	1.7	0.8690	306.04		1.1
0.3221	303.17	307.33	2.8	0.5687	303.17	303.44	1.6	1.0000	311.50		1.0

The data considered here.

Method: Dynamic Method / Visual Observation **Precision:** 0.1 K

NOTE: The bibliographic information, compound identities, sample descriptions, and mixture were entered previously. (There are separate tutorials related to capture of this information.)

Property & Units selection

Method selection

Specification of phases and value

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.